esp32-spidump.ino
· 8.3 KiB · Arduino
Неформатований
#include <SPI.h>
#include "FS.h"
#include "SPIFFS.h"
#define CS 5
#define FORMAT false
SPIClass * vspi = NULL;
SPISettings settings(20000000, MSBFIRST, SPI_MODE0);
//SPISettings settings(1000000, MSBFIRST, SPI_MODE0);
byte jedec[3];
void readBuffer(uint32_t addr, uint8_t *buff, uint32_t len) {
uint8_t ad[3];
uint8_t out;
ad[0] = (addr & 0xFF0000) >> 16;
ad[1] = (addr & 0x00FF00) >> 8;
ad[2] = (addr & 0x0000FF) >> 0;
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x03); // Read Data command
vspi->transfer(ad[0]);
vspi->transfer(ad[1]);
vspi->transfer(ad[2]);
for (uint32_t i = 0; i < len; i++) {
*buff = vspi->transfer(0x00);
buff++;
}
vspi->endTransaction();
digitalWrite(CS, HIGH);
}
void printHexPad32(uint32_t val) {
for (int i = 7; i > 0; i--) {
uint32_t v = (1 << (i * 4));
if (val < v) {
Serial.print("0");
} else {
break;
}
}
Serial.print(val, HEX);
}
void printHexPad8(uint8_t val) {
if (val < 0x10) {
Serial.print("0");
}
Serial.print(val, HEX);
}
void printASCII(uint8_t v) {
if (v >= 0x20 && v <= 0x7E) {
Serial.print((char)v);
} else {
Serial.print(".");
}
}
void printBuff(uint8_t *buff, uint32_t len, uint32_t mainoffset) {
Serial.println("-----------------------------");
for (uint32_t i = 0; i < len; i++) {
if (i % 16 == 0) {
printHexPad32(mainoffset + i);
Serial.print(": ");
}
printHexPad8(buff[i]);
Serial.print(" ");
if (i % 16 == 15) {
uint32_t off = (i / 16) * 16;
for (uint32_t p = 0; p < 16; p++) {
printASCII(buff[off+p]);
}
Serial.println("");
}
}
Serial.println("-----------------------------");
}
#define CHUNK 256
uint8_t databuff[CHUNK];
uint8_t pattern[CHUNK];
uint32_t flashSize = 512 * 1024;
uint8_t readStatus() {
uint8_t status;
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x05);
status = vspi->transfer(0);
vspi->endTransaction();
digitalWrite(CS, HIGH);
return status;
}
void waitReady() {
uint8_t status = 1;
// Serial.println("Waiting device not BUSY");
while (status) {
delay(1);
status = readStatus();
status &= 1; // Only first bit
}
// Serial.println("Device is free!");
}
void sectorErase(uint32_t addr) {
uint8_t ad[3];
uint8_t out;
ad[0] = (addr & 0xFF0000) >> 16;
ad[1] = (addr & 0x00FF00) >> 8;
ad[2] = (addr & 0x0000FF) >> 0;
writeEnable();
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x20); // Read Data command
vspi->transfer(ad[0]);
vspi->transfer(ad[1]);
vspi->transfer(ad[2]);
vspi->endTransaction();
digitalWrite(CS, HIGH);
waitReady();
}
#define SRP (1 << 7)
#define TB (1 << 5)
#define BP2 (1 << 4)
#define BP1 (1 << 3)
#define BP0 (1 << 2)
#define WEL (1 << 1)
void unprotect() {
writeEnable();
uint8_t ok = 0;
while(!ok) {
uint8_t status = readStatus();
status &= ~(SRP | TB | BP2 | BP1 | BP0); // Reset protections
status &= ~(WEL); // Avoid checking Write Enable that is reseted after operation
digitalWrite(CS, HIGH);
delay(1);
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x01);
vspi->transfer(status);
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(1);
waitReady();
uint8_t status2 = readStatus();
if (status != status2) {
Serial.print("Error writting status! Expected ");
Serial.print(status, HEX);
Serial.print(" got ");
Serial.println(status2, HEX);
} else {
ok = 1;
}
}
}
void writeEnable() {
// Serial.println("Write Enable");
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x06);
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(10);
uint8_t status = readStatus();
status &= 2;
if (status != 2) {
Serial.println("ERROR setting Write Enable!");
}
waitReady();
}
void chipErase() {
writeEnable();
Serial.println("Chip Erase");
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0xC7);
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(10);
waitReady();
}
void programPage(uint32_t addr, uint8_t *data) {
uint8_t ad[3];
ad[0] = (addr & 0xFF0000) >> 16;
ad[1] = (addr & 0x00FF00) >> 8;
ad[2] = (addr & 0x0000FF) >> 0;
writeEnable();
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x02);
vspi->transfer(ad[0]);
vspi->transfer(ad[1]);
vspi->transfer(ad[2]);
for (int i = 0; i < 256; i++) {
vspi->transfer(data[i]);
}
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(1);
waitReady();
}
char *wololo = "ACNDEFHEJRHSUDIFKEMLOPEC";
void TestChip() {
Serial.println("Unprotect");
unprotect();
// Serial.println("Erasing chip");
// chipErase();
Serial.println("Programming test buffer");
for (int i = 0; i < CHUNK; i++) {
pattern[i] = (i & 0xFF);
}
int numPages = flashSize / CHUNK;
for (int i = 0; i < numPages; i++) {
Serial.print("Testing page ");
Serial.println(i, HEX);
sectorErase(i*CHUNK);
programPage(i*CHUNK, pattern);
readBuffer(i * CHUNK, databuff, CHUNK);
int diff = compare(databuff, pattern, 256);
if (diff != -1) {
Serial.print("Expected at offset ");
printHexPad32(i * CHUNK);
Serial.println("");
printBuff(pattern, CHUNK, i * CHUNK);
Serial.println("");
Serial.println("Got: ");
printBuff(databuff, CHUNK, i * CHUNK);
break;
}
}
Serial.println("FINISH");
}
void setup() {
Serial.begin(115200);
Serial.setDebugOutput(true);
Serial.println("ON!!!");
pinMode(23, OUTPUT);
pinMode(19, INPUT);
pinMode(18,OUTPUT);
pinMode(CS, OUTPUT);
pinMode(13, OUTPUT);
pinMode(22, OUTPUT);
digitalWrite(CS, HIGH);
digitalWrite(13, HIGH);
digitalWrite(22, HIGH);
if(FORMAT) {
SPIFFS.format();
}
if(!SPIFFS.begin(true)){
Serial.println("SPIFFS Mount Failed");
return;
}
memcpy(databuff, wololo, 24);
vspi = new SPIClass(VSPI);
vspi->begin();
vspi->setDataMode(0);
vspi->setBitOrder(MSBFIRST);
delay(100);
uint32_t offset = 0;
Serial.println("Send anything to start.");
while(Serial.available() <= 0);
TestChip();
// unprotect();
// chipErase();
// programPage(0, databuff);
// PrintFlash();
// DumpFlash();
// WriteFlash();
// VerifyFlash();
}
int compare(uint8_t *buff0, uint8_t *buff1, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
if (buff0[i] != buff1[i]) {
return i;
}
}
return -1;
}
void VerifyFlash() {
File file = SPIFFS.open("/FLSHSAVE.BIN", FILE_READ);
if (!file) {
Serial.println("Error opening file!");
while(true) {
delay(1000);
}
}
uint32_t addr = 0;
int diff = -1;
Serial.println("VERIFING");
while(addr < flashSize) {
// printHexPad32(addr);
// Serial.println("");
file.read(databuff, 256);
readBuffer(addr, databuff + 512, 256);
diff = compare(databuff, databuff + 512, 256);
if (diff != -1) {
Serial.print("\nCorrupted at index ");
Serial.print(addr + diff, HEX);
Serial.println("");
break;
}
addr += 256;
}
file.close();
Serial.println("DONE");
}
void WriteFlash() {
unprotect();
chipErase();
File file = SPIFFS.open("/FLSHSAVE.BIN", FILE_READ);
if (!file) {
Serial.println("Error opening file!");
while(true) {
delay(1000);
}
}
uint32_t addr = 0;
Serial.println("FLASHING");
while(addr < flashSize) {
printHexPad32(addr);
Serial.println("");
file.read(databuff, 256);
programPage(addr, databuff);
addr += 256;
}
file.close();
Serial.println("DONE");
}
void PrintFlash() {
uint32_t offset = 0;
Serial.println("READING FLASH");
while (offset < flashSize) {
readBuffer(offset, databuff, CHUNK);
printBuff(databuff, CHUNK, offset);
offset += CHUNK;
break;
}
}
void DumpFlash() {
File file = SPIFFS.open("/SAVE.BIN", FILE_WRITE);
if (!file) {
Serial.println("Error opening file!");
while(true) {
delay(1000);
}
}
uint32_t offset = 0;
Serial.println("READING FLASH");
while (offset < flashSize) {
readBuffer(offset, databuff, CHUNK);
file.write(databuff, CHUNK);
printHexPad32(offset);
printBuff(databuff, CHUNK, offset);
Serial.println("");
offset += CHUNK;
}
file.close();
}
void loop() {
delay(1000);
}
| 1 | #include <SPI.h> |
| 2 | #include "FS.h" |
| 3 | #include "SPIFFS.h" |
| 4 | |
| 5 | #define CS 5 |
| 6 | #define FORMAT false |
| 7 | SPIClass * vspi = NULL; |
| 8 | |
| 9 | SPISettings settings(20000000, MSBFIRST, SPI_MODE0); |
| 10 | //SPISettings settings(1000000, MSBFIRST, SPI_MODE0); |
| 11 | |
| 12 | byte jedec[3]; |
| 13 | |
| 14 | void readBuffer(uint32_t addr, uint8_t *buff, uint32_t len) { |
| 15 | uint8_t ad[3]; |
| 16 | uint8_t out; |
| 17 | ad[0] = (addr & 0xFF0000) >> 16; |
| 18 | ad[1] = (addr & 0x00FF00) >> 8; |
| 19 | ad[2] = (addr & 0x0000FF) >> 0; |
| 20 | |
| 21 | digitalWrite(CS, LOW); |
| 22 | vspi->beginTransaction(settings); |
| 23 | vspi->transfer(0x03); // Read Data command |
| 24 | vspi->transfer(ad[0]); |
| 25 | vspi->transfer(ad[1]); |
| 26 | vspi->transfer(ad[2]); |
| 27 | for (uint32_t i = 0; i < len; i++) { |
| 28 | *buff = vspi->transfer(0x00); |
| 29 | buff++; |
| 30 | } |
| 31 | vspi->endTransaction(); |
| 32 | digitalWrite(CS, HIGH); |
| 33 | } |
| 34 | |
| 35 | void printHexPad32(uint32_t val) { |
| 36 | for (int i = 7; i > 0; i--) { |
| 37 | uint32_t v = (1 << (i * 4)); |
| 38 | if (val < v) { |
| 39 | Serial.print("0"); |
| 40 | } else { |
| 41 | break; |
| 42 | } |
| 43 | } |
| 44 | Serial.print(val, HEX); |
| 45 | } |
| 46 | |
| 47 | void printHexPad8(uint8_t val) { |
| 48 | if (val < 0x10) { |
| 49 | Serial.print("0"); |
| 50 | } |
| 51 | Serial.print(val, HEX); |
| 52 | } |
| 53 | |
| 54 | void printASCII(uint8_t v) { |
| 55 | if (v >= 0x20 && v <= 0x7E) { |
| 56 | Serial.print((char)v); |
| 57 | } else { |
| 58 | Serial.print("."); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | void printBuff(uint8_t *buff, uint32_t len, uint32_t mainoffset) { |
| 63 | Serial.println("-----------------------------"); |
| 64 | for (uint32_t i = 0; i < len; i++) { |
| 65 | if (i % 16 == 0) { |
| 66 | printHexPad32(mainoffset + i); |
| 67 | Serial.print(": "); |
| 68 | } |
| 69 | printHexPad8(buff[i]); |
| 70 | Serial.print(" "); |
| 71 | if (i % 16 == 15) { |
| 72 | uint32_t off = (i / 16) * 16; |
| 73 | for (uint32_t p = 0; p < 16; p++) { |
| 74 | printASCII(buff[off+p]); |
| 75 | } |
| 76 | Serial.println(""); |
| 77 | } |
| 78 | } |
| 79 | Serial.println("-----------------------------"); |
| 80 | } |
| 81 | |
| 82 | #define CHUNK 256 |
| 83 | |
| 84 | uint8_t databuff[CHUNK]; |
| 85 | uint8_t pattern[CHUNK]; |
| 86 | |
| 87 | uint32_t flashSize = 512 * 1024; |
| 88 | |
| 89 | uint8_t readStatus() { |
| 90 | uint8_t status; |
| 91 | digitalWrite(CS, LOW); |
| 92 | vspi->beginTransaction(settings); |
| 93 | vspi->transfer(0x05); |
| 94 | status = vspi->transfer(0); |
| 95 | vspi->endTransaction(); |
| 96 | digitalWrite(CS, HIGH); |
| 97 | return status; |
| 98 | } |
| 99 | |
| 100 | void waitReady() { |
| 101 | uint8_t status = 1; |
| 102 | // Serial.println("Waiting device not BUSY"); |
| 103 | while (status) { |
| 104 | delay(1); |
| 105 | status = readStatus(); |
| 106 | status &= 1; // Only first bit |
| 107 | } |
| 108 | // Serial.println("Device is free!"); |
| 109 | } |
| 110 | |
| 111 | void sectorErase(uint32_t addr) { |
| 112 | uint8_t ad[3]; |
| 113 | uint8_t out; |
| 114 | ad[0] = (addr & 0xFF0000) >> 16; |
| 115 | ad[1] = (addr & 0x00FF00) >> 8; |
| 116 | ad[2] = (addr & 0x0000FF) >> 0; |
| 117 | |
| 118 | writeEnable(); |
| 119 | digitalWrite(CS, LOW); |
| 120 | vspi->beginTransaction(settings); |
| 121 | vspi->transfer(0x20); // Read Data command |
| 122 | vspi->transfer(ad[0]); |
| 123 | vspi->transfer(ad[1]); |
| 124 | vspi->transfer(ad[2]); |
| 125 | vspi->endTransaction(); |
| 126 | digitalWrite(CS, HIGH); |
| 127 | waitReady(); |
| 128 | } |
| 129 | |
| 130 | #define SRP (1 << 7) |
| 131 | #define TB (1 << 5) |
| 132 | #define BP2 (1 << 4) |
| 133 | #define BP1 (1 << 3) |
| 134 | #define BP0 (1 << 2) |
| 135 | #define WEL (1 << 1) |
| 136 | |
| 137 | void unprotect() { |
| 138 | writeEnable(); |
| 139 | uint8_t ok = 0; |
| 140 | while(!ok) { |
| 141 | uint8_t status = readStatus(); |
| 142 | status &= ~(SRP | TB | BP2 | BP1 | BP0); // Reset protections |
| 143 | status &= ~(WEL); // Avoid checking Write Enable that is reseted after operation |
| 144 | |
| 145 | digitalWrite(CS, HIGH); |
| 146 | delay(1); |
| 147 | digitalWrite(CS, LOW); |
| 148 | vspi->beginTransaction(settings); |
| 149 | vspi->transfer(0x01); |
| 150 | vspi->transfer(status); |
| 151 | vspi->endTransaction(); |
| 152 | digitalWrite(CS, HIGH); |
| 153 | delay(1); |
| 154 | waitReady(); |
| 155 | |
| 156 | uint8_t status2 = readStatus(); |
| 157 | if (status != status2) { |
| 158 | Serial.print("Error writting status! Expected "); |
| 159 | Serial.print(status, HEX); |
| 160 | Serial.print(" got "); |
| 161 | Serial.println(status2, HEX); |
| 162 | } else { |
| 163 | ok = 1; |
| 164 | } |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void writeEnable() { |
| 169 | // Serial.println("Write Enable"); |
| 170 | digitalWrite(CS, LOW); |
| 171 | vspi->beginTransaction(settings); |
| 172 | vspi->transfer(0x06); |
| 173 | vspi->endTransaction(); |
| 174 | digitalWrite(CS, HIGH); |
| 175 | delay(10); |
| 176 | uint8_t status = readStatus(); |
| 177 | status &= 2; |
| 178 | if (status != 2) { |
| 179 | Serial.println("ERROR setting Write Enable!"); |
| 180 | } |
| 181 | waitReady(); |
| 182 | } |
| 183 | |
| 184 | void chipErase() { |
| 185 | writeEnable(); |
| 186 | Serial.println("Chip Erase"); |
| 187 | digitalWrite(CS, LOW); |
| 188 | vspi->beginTransaction(settings); |
| 189 | vspi->transfer(0xC7); |
| 190 | vspi->endTransaction(); |
| 191 | digitalWrite(CS, HIGH); |
| 192 | delay(10); |
| 193 | waitReady(); |
| 194 | } |
| 195 | |
| 196 | void programPage(uint32_t addr, uint8_t *data) { |
| 197 | uint8_t ad[3]; |
| 198 | ad[0] = (addr & 0xFF0000) >> 16; |
| 199 | ad[1] = (addr & 0x00FF00) >> 8; |
| 200 | ad[2] = (addr & 0x0000FF) >> 0; |
| 201 | |
| 202 | writeEnable(); |
| 203 | digitalWrite(CS, LOW); |
| 204 | vspi->beginTransaction(settings); |
| 205 | vspi->transfer(0x02); |
| 206 | vspi->transfer(ad[0]); |
| 207 | vspi->transfer(ad[1]); |
| 208 | vspi->transfer(ad[2]); |
| 209 | for (int i = 0; i < 256; i++) { |
| 210 | vspi->transfer(data[i]); |
| 211 | } |
| 212 | vspi->endTransaction(); |
| 213 | digitalWrite(CS, HIGH); |
| 214 | delay(1); |
| 215 | waitReady(); |
| 216 | } |
| 217 | |
| 218 | char *wololo = "ACNDEFHEJRHSUDIFKEMLOPEC"; |
| 219 | |
| 220 | void TestChip() { |
| 221 | Serial.println("Unprotect"); |
| 222 | unprotect(); |
| 223 | // Serial.println("Erasing chip"); |
| 224 | // chipErase(); |
| 225 | Serial.println("Programming test buffer"); |
| 226 | for (int i = 0; i < CHUNK; i++) { |
| 227 | pattern[i] = (i & 0xFF); |
| 228 | } |
| 229 | int numPages = flashSize / CHUNK; |
| 230 | for (int i = 0; i < numPages; i++) { |
| 231 | Serial.print("Testing page "); |
| 232 | Serial.println(i, HEX); |
| 233 | sectorErase(i*CHUNK); |
| 234 | programPage(i*CHUNK, pattern); |
| 235 | readBuffer(i * CHUNK, databuff, CHUNK); |
| 236 | int diff = compare(databuff, pattern, 256); |
| 237 | if (diff != -1) { |
| 238 | Serial.print("Expected at offset "); |
| 239 | printHexPad32(i * CHUNK); |
| 240 | Serial.println(""); |
| 241 | printBuff(pattern, CHUNK, i * CHUNK); |
| 242 | Serial.println(""); |
| 243 | Serial.println("Got: "); |
| 244 | printBuff(databuff, CHUNK, i * CHUNK); |
| 245 | break; |
| 246 | } |
| 247 | } |
| 248 | Serial.println("FINISH"); |
| 249 | } |
| 250 | |
| 251 | void setup() { |
| 252 | Serial.begin(115200); |
| 253 | Serial.setDebugOutput(true); |
| 254 | Serial.println("ON!!!"); |
| 255 | |
| 256 | pinMode(23, OUTPUT); |
| 257 | pinMode(19, INPUT); |
| 258 | pinMode(18,OUTPUT); |
| 259 | pinMode(CS, OUTPUT); |
| 260 | pinMode(13, OUTPUT); |
| 261 | pinMode(22, OUTPUT); |
| 262 | digitalWrite(CS, HIGH); |
| 263 | digitalWrite(13, HIGH); |
| 264 | digitalWrite(22, HIGH); |
| 265 | |
| 266 | if(FORMAT) { |
| 267 | SPIFFS.format(); |
| 268 | } |
| 269 | |
| 270 | if(!SPIFFS.begin(true)){ |
| 271 | Serial.println("SPIFFS Mount Failed"); |
| 272 | return; |
| 273 | } |
| 274 | |
| 275 | memcpy(databuff, wololo, 24); |
| 276 | |
| 277 | vspi = new SPIClass(VSPI); |
| 278 | vspi->begin(); |
| 279 | vspi->setDataMode(0); |
| 280 | vspi->setBitOrder(MSBFIRST); |
| 281 | |
| 282 | |
| 283 | delay(100); |
| 284 | |
| 285 | uint32_t offset = 0; |
| 286 | Serial.println("Send anything to start."); |
| 287 | while(Serial.available() <= 0); |
| 288 | |
| 289 | TestChip(); |
| 290 | // unprotect(); |
| 291 | // chipErase(); |
| 292 | // programPage(0, databuff); |
| 293 | // PrintFlash(); |
| 294 | // DumpFlash(); |
| 295 | // WriteFlash(); |
| 296 | // VerifyFlash(); |
| 297 | } |
| 298 | |
| 299 | int compare(uint8_t *buff0, uint8_t *buff1, uint32_t len) { |
| 300 | for (uint32_t i = 0; i < len; i++) { |
| 301 | if (buff0[i] != buff1[i]) { |
| 302 | return i; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | return -1; |
| 307 | } |
| 308 | |
| 309 | void VerifyFlash() { |
| 310 | File file = SPIFFS.open("/FLSHSAVE.BIN", FILE_READ); |
| 311 | |
| 312 | if (!file) { |
| 313 | Serial.println("Error opening file!"); |
| 314 | while(true) { |
| 315 | delay(1000); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | uint32_t addr = 0; |
| 320 | int diff = -1; |
| 321 | Serial.println("VERIFING"); |
| 322 | while(addr < flashSize) { |
| 323 | // printHexPad32(addr); |
| 324 | // Serial.println(""); |
| 325 | file.read(databuff, 256); |
| 326 | readBuffer(addr, databuff + 512, 256); |
| 327 | diff = compare(databuff, databuff + 512, 256); |
| 328 | if (diff != -1) { |
| 329 | Serial.print("\nCorrupted at index "); |
| 330 | Serial.print(addr + diff, HEX); |
| 331 | Serial.println(""); |
| 332 | break; |
| 333 | } |
| 334 | addr += 256; |
| 335 | } |
| 336 | |
| 337 | file.close(); |
| 338 | Serial.println("DONE"); |
| 339 | } |
| 340 | |
| 341 | void WriteFlash() { |
| 342 | unprotect(); |
| 343 | chipErase(); |
| 344 | |
| 345 | File file = SPIFFS.open("/FLSHSAVE.BIN", FILE_READ); |
| 346 | |
| 347 | if (!file) { |
| 348 | Serial.println("Error opening file!"); |
| 349 | while(true) { |
| 350 | delay(1000); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | uint32_t addr = 0; |
| 355 | Serial.println("FLASHING"); |
| 356 | |
| 357 | while(addr < flashSize) { |
| 358 | printHexPad32(addr); |
| 359 | Serial.println(""); |
| 360 | file.read(databuff, 256); |
| 361 | programPage(addr, databuff); |
| 362 | addr += 256; |
| 363 | } |
| 364 | |
| 365 | file.close(); |
| 366 | Serial.println("DONE"); |
| 367 | } |
| 368 | |
| 369 | |
| 370 | void PrintFlash() { |
| 371 | uint32_t offset = 0; |
| 372 | |
| 373 | Serial.println("READING FLASH"); |
| 374 | while (offset < flashSize) { |
| 375 | readBuffer(offset, databuff, CHUNK); |
| 376 | printBuff(databuff, CHUNK, offset); |
| 377 | offset += CHUNK; |
| 378 | break; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | void DumpFlash() { |
| 383 | File file = SPIFFS.open("/SAVE.BIN", FILE_WRITE); |
| 384 | if (!file) { |
| 385 | Serial.println("Error opening file!"); |
| 386 | while(true) { |
| 387 | delay(1000); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | uint32_t offset = 0; |
| 392 | |
| 393 | Serial.println("READING FLASH"); |
| 394 | while (offset < flashSize) { |
| 395 | readBuffer(offset, databuff, CHUNK); |
| 396 | file.write(databuff, CHUNK); |
| 397 | printHexPad32(offset); |
| 398 | printBuff(databuff, CHUNK, offset); |
| 399 | Serial.println(""); |
| 400 | offset += CHUNK; |
| 401 | } |
| 402 | file.close(); |
| 403 | } |
| 404 | |
| 405 | void loop() { |
| 406 | delay(1000); |
| 407 | } |