Dernière activité 1 month ago

Paras aulas de física experimental.

Révision 98c6eb0f56f7c7908071330acd5ff0086d18e72b

generate.py Brut
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3from __future__ import unicode_literals
4
5import sys
6import numpy as np
7import matplotlib.mlab as mlab
8import matplotlib.pyplot as plt
9
10width = 20 # cm
11height = 15 # cm
12
13if len(sys.argv) < 4:
14 print "Usage: generate.py data.txt title output"
15 exit(1)
16
17output = sys.argv[3]
18title = sys.argv[2].decode(encoding='UTF-8',errors='strict')
19
20data = np.fromfile(sys.argv[1], sep='\n')
21
22num_bins = 28
23avg = np.average(data)
24std = np.std(data)
25
26fig, ax = plt.subplots()
27n, bins, patches = ax.hist(data, num_bins, color='burlywood', histtype='stepfilled')
28
29print "Média: %s Desvio Padrão: %s" %(avg, std)
30
31ax.axvline(avg, color='red', label="Média = %.2f s" %avg)
32ax.axvline(avg-std, color='lightblue', label="Média - Desvio Padrão = %.2f s" %(avg-std))
33ax.axvline(avg+std, color='darkblue', label="Média + Desvio Padrão = %.2f s" % (avg+std))
34
35ax.set_xlabel('Tempo (s)')
36ax.set_ylabel('Contagem (n)')
37ax.set_title(title)
38ax.set_ylim( None, n.max() * 1.2)
39
40legend = ax.legend(loc='upper left', shadow=True, prop={'size':10})
41fig.tight_layout()
42
43fig.set_size_inches(width / 2.54, height / 2.54)
44plt.savefig('%s.png' %output, dpi=100)
grafa.py Brut
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3from __future__ import unicode_literals
4
5import sys
6import numpy as np
7import matplotlib.mlab as mlab
8import matplotlib.pyplot as plt
9
10width = 20 # cm
11height = 15 # cm
12
13deltaS = 34 # metros
14
15
16if len(sys.argv) < 4:
17 print "Usage: generate.py data.txt type output"
18 exit(1)
19
20type = sys.argv[2].decode(encoding='UTF-8',errors='strict')
21output = sys.argv[3]
22
23data = np.fromfile(sys.argv[1], sep='\n')
24
25data = (2 * 34) / (data ** 2)
26
27num_bins = 12
28avg = np.average(data)
29std = np.std(data)
30
31fig, ax = plt.subplots()
32n, bins, patches = ax.hist(data, num_bins, color='burlywood', histtype='stepfilled')
33
34print "Média: %s Desvio Padrão: %s" %(avg, std)
35
36ax.axvline(avg, color='red', label="Média = %.2f m/s²" %avg)
37ax.axvline(avg-std, color='lightblue', label="Média - Desvio Padrão = %.2f m/s²" %(avg-std))
38ax.axvline(avg+std, color='darkblue', label="Média + Desvio Padrão = %.2f m/s²" % (avg+std))
39
40ax.set_xlabel('Aceleração (m/s²)')
41ax.set_ylabel('Contagem (n)')
42ax.set_title('Histograma das Acelerações Médias (%s)' %type)
43ax.set_ylim( None, n.max() * 1.2)
44
45legend = ax.legend(loc='upper left', shadow=True, prop={'size':10})
46fig.tight_layout()
47
48fig.set_size_inches(width / 2.54, height / 2.54)
49plt.savefig('%s.png' %output, dpi=100)
grafv.py Brut
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3from __future__ import unicode_literals
4
5import sys
6import numpy as np
7import matplotlib.mlab as mlab
8import matplotlib.pyplot as plt
9
10width = 20 # cm
11height = 15 # cm
12
13deltaS = 34 # metros
14
15if len(sys.argv) < 4:
16 print "Usage: generate.py data.txt type output"
17 exit(1)
18
19type = sys.argv[2].decode(encoding='UTF-8',errors='strict')
20output = sys.argv[3]
21
22data = np.fromfile(sys.argv[1], sep='\n')
23
24data = deltaS / data
25
26num_bins = 12
27avg = np.average(data)
28std = np.std(data)
29
30fig, ax = plt.subplots()
31n, bins, patches = ax.hist(data, num_bins, color='burlywood', histtype='stepfilled')
32
33print "Média: %s Desvio Padrão: %s" %(avg, std)
34
35ax.axvline(avg, color='red', label="Média = %.2f m/s" %avg)
36ax.axvline(avg-std, color='lightblue', label="Média - Desvio Padrão = %.2f m/s" %(avg-std))
37ax.axvline(avg+std, color='darkblue', label="Média + Desvio Padrão = %.2f m/s" % (avg+std))
38
39ax.set_xlabel('Velocidade (m/s)')
40ax.set_ylabel('Contagem (n)')
41ax.set_title('Histograma das Velocidades Médias (%s)' %type)
42ax.set_ylim( None, n.max() * 1.2)
43
44legend = ax.legend(loc='upper left', shadow=True, prop={'size':10})
45fig.tight_layout()
46
47fig.set_size_inches(width / 2.54, height / 2.54)
48plt.savefig('%s.png' %output, dpi=100)
super.py Brut
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3
4# Just saving this, because it works beautifully, but its crap because it isn't what teacher asked :((
5from __future__ import unicode_literals
6
7import sys
8import numpy as np
9import matplotlib.mlab as mlab
10import matplotlib.pyplot as plt
11
12
13if len(sys.argv) < 4:
14 print "Usage: generate.py data.txt type output"
15 exit(1)
16
17def GenHistogram(data, output, type, unit, title):
18 width = 20 # cm
19 height = 15 # cm
20 num_bins = max(len(data) / 3, 2)
21 avg = np.average(data)
22 std = np.std(data)
23
24 fig, ax = plt.subplots()
25 n, bins, patches = ax.hist(data, num_bins, color='burlywood', histtype='stepfilled')
26
27 ax.axvline(avg, color='red', label="Média = %.2f %s" % (avg, unit))
28 ax.axvline(avg-std, color='lightblue', label="Média - Desvio Padrão = %.2f %s" %(avg-std, unit))
29 ax.axvline(avg+std, color='darkblue', label="Média + Desvio Padrão = %.2f %s" % (avg+std, unit))
30
31 plt.text(0.025, 0.8, r'$\sigma = %.2f$' % std, transform = ax.transAxes)
32 ax.set_xlabel('%s (%s)' %(type, unit))
33 ax.set_ylabel('Contagem (n)')
34 ax.set_title('%s' %title)
35 ax.set_ylim( None, n.max() * 1.2)
36
37 legend = ax.legend(loc='upper left', shadow=True, prop={'size':10})
38 fig.tight_layout()
39
40 fig.set_size_inches(width / 2.54, height / 2.54)
41 plt.savefig('%s.png' %output, dpi=100)
42
43
44deltaS = 34 # metros
45
46type = sys.argv[2].decode(encoding='UTF-8',errors='strict')
47output = sys.argv[3]
48data = np.fromfile(sys.argv[1], sep='\n')
49dataV = deltaS / data
50dataA = (2 * deltaS) / (data ** 2)
51
52Tstd = []
53Vstd = []
54Astd = []
55
56Tavg = []
57Vavg = []
58Aavg = []
59
60for i in range(1,6):
61 n = 2**i
62 arrT = []
63 arrV = []
64 arrA = []
65
66 print "Calculando para %s" %n
67 filenameT = "o/%s-%s-t.txt" %(output, n)
68 filenameV = "o/%s-%s-v.txt" %(output, n)
69 filenameA = "o/%s-%s-a.txt" %(output, n)
70
71 print "Salvando em %s %s %s" % (filenameT, filenameV, filenameA)
72 fT = open(filenameT, "w")
73 fV = open(filenameV, "w")
74 fA = open(filenameA, "w")
75
76 for z in range(0, len(data), n):
77 avgT = 0
78 avgV = 0
79 avgA = 0
80 for k in range(0, n):
81 if z+k >= len(data):
82 break
83 avgT += data[z+k]
84 avgV += dataV[z+k]
85 avgA += dataA[z+k]
86
87 avgT /= n
88 avgV /= n
89 avgA /= n
90
91 arrT.append(avgT)
92 arrV.append(avgV)
93 arrA.append(avgA)
94
95 fT.write("%.2f\n" %avgT)
96 fV.write("%.2f\n" %avgV)
97 fA.write("%.2f\n" %avgA)
98
99 fT.close()
100 fV.close()
101 fA.close()
102
103 npT = np.array(arrT)
104 npV = np.array(arrV)
105 npA = np.array(arrA)
106
107 Tstd.append(np.std(npT))
108 Vstd.append(np.std(npV))
109 Astd.append(np.std(npA))
110
111 GenHistogram(npT, "%s-%s-T" %(output, n), 'Tempo de Queda', 's', 'Histograma de Tempo de Queda Média N=%s (%s)' %(n, type))
112 GenHistogram(npV, "%s-%s-V" %(output, n), 'Velocidade', 'm/s', 'Histograma de Velocidade Média N=%s (%s)' %(n, type))
113 GenHistogram(npA, "%s-%s-A" %(output, n), 'Aceleração', 'm/s²', 'Histograma de Aceleração Média N=%s (%s)' %(n, type))
114
115 Tavg.append(np.average(npT))
116 Vavg.append(np.average(npV))
117 Aavg.append(np.average(npA))
118
119print Tstd, Vstd, Astd